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List of Definitions 

CAD: Computer-Aided Design - software used to help create and test designs 

CprE: Computer engineering, generally referring to the major or a Computer Engineering 
student. 

DRSSTC: Dual Resonant Solid State Tesla Coil - a more advanced SSTC which adds a tank 
capacitor across the primary coil, which, when tuned properly, allows for greater flow of 
current through the primary (and thus bigger sparks from the secondary) 

ECpE: Electrical and Computer Engineering. Usually refers to the EcpE Department at 
Iowa State University, which includes Electrical, Computer, and Software Engineering. 

EE: Electrical engineering, generally referring to the major or an Electrical Engineering 
student. 

MIDI: Musical Instrument Digital Interface. A technical standard for playing sounds 
through a digital interface. MIDI can also refer to the file type that computers use to play 
sounds based on the MIDI standard. 

MOSFET: Metal-Oxide Semiconductor Field-Effect Transistor - a common transistor, in 
this case used to switch the Tesla coil on and off 

PCB: Printed circuit board. 

PVC Pipe: Polyvinyl Chloride Pipe - a rigid plastic pipe often used in plumbing - in this 
case, used for construction of the tesla coil  

PWM: Pulse width modulation. In this case, a process for outputting analog signals on a 
microcontroller pin. 

SolidWorks: a CAD program used to design virtual parts and assemblies 

SSTC: Solid State Tesla Coil - a tesla coil design which can be modulated, producing audio 

Tesla Coil: A resonating transformer circuit that produces very high voltages, generating 
electric arcs into the air. 

Top Load: a large capacitive object placed on top of the secondary coil of the tesla coil that 
helps create an electric field - often in the shape of a toroid 

WAP: WiFi Access Point 

Zeusaphone: A special Tesla coil that releases voltages at specific frequencies, creating 
sound like a musical instrument  

SDMAY19-11     4 



 

1 Introduction 

1.1 ACKNOWLEDGEMENT 

The MIDI Zeusaphone team would like to extends thanks to our client Dr. Joseph 
Zambreno for providing the project, as well as the full financial support and other 
technical assistance during the project. The team also thanks Lee Harker and the rest of 
the ETG in Coover for sharing their invaluable knowledge and assisting in designing the 
physical aspects of the project. The team would also like to thank our 1st semester advisor 
Craig Rupp. 

1.2 PROBLEM STATEMENT 

When prospective students are given a tour through Iowa State, they are shown the 
accomplishments and senior design projects of past undergrad students. The Electrical 
and Computer Engineering Department currently has two arcade cabinets that were 
constructed by previous electrical and computer engineers. They are rarely seen in use. In 
order to continue attracting students to ECprE, the department needs a new showpiece to 
demonstrate what prospective students could be capable of if they choose to attend Iowa 
State. 

Our solution to this problem is to construct a Tesla Coil that plays music, also called a 
Zeusaphone. The Zeusaphone is able to play preset songs, as well as load songs to be 
played in this way. It can also be played with a MIDI music keyboard so there is a more 
interactive aspect. The project includes specialized circuits and a microcontroller. It will 
appeal to prospective students with an interest in embedded/low level software, circuit 
design, and power electronics. The wide range of topics should help the project be 
successful by potentially appealing to many different student interests. Because it will 
potentially be shown on tours, an operating manual is provided to ensure the operator is 
using the Zeusaphone properly. An additional safety manual and proper signage will also 
be provided so that operators are aware of safety when operating the device. 

The team is comprised of four Computer Engineering students and two Electrical 
engineering students. It was determined to be a good fit for the project as the two EE 
students can tackle the tesla coil designs with assistance from the CprE students in 
building and operating the coil. The CprE knowledge can then be applied to converting 
MIDI messages, outputting messages to the circuit, creating a user interface, and setting 
up the interfacing keyboard and web client. The project appeals to the team as many have 
a musical background and all students find the tesla coil to be an intriguing subject on its 
own. 

1.3 OPERATING ENVIRONMENT 

The MIDI Zeusaphone will always be demonstrated in a reasonable location. Outdoors in 
good weather should not pose a problem, but there might be an unforeseen risk from 
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doing so. It is recommended to operate the Zeusaphone indoors. There may be a problem 
with dust build-up if it is stored for an extended period of time. Due to ozone generation, 
make sure to operating the Zeusaphone in a well-ventilated and open room. However, the 
Zeusaphone can be run for a few minutes without ozone problems even if operated in a 
small room. 

1.4 INTENDED USERS AND INTENDED USES 

As the goal of the MIDI Zeusaphone is to be a showcase item for the EcpE Department, 
the operator of the Zeusaphone will always be a faculty member of the EcpE Department. 
However, the operator may not always be someone with previous knowledge or operation 
experience with the device. Therefore the MIDI Zeusaphone should be designed with 
simplicity and intuitive operation in mind. 

The MIDI Zeusaphone will be used in demo scenarios in front of an audience. It is very 
loud when operating, so a lecture hall audience can definitely hear it. However, the sparks 
are probably not large enough to be visually impressive from the other end of a lecture 
hall. 

1.5 ASSUMPTIONS AND LIMITATIONS 

Assumptions: 

On Usage 
● The operator will be able to play a MIDI keyboard to produce sounds 
● The operator can play pre-loaded MIDI songs to play through the web 

client. 
● The operator can load MIDI songs through the web client to be played 

later. 

On Safety 
● The primary use of the Zeusaphone will be as a showcase item. 
● The operator will be fully aware of the safety considerations and proper use 

of the Zeusaphone. 
● During operation, all safety standards will be followed by the operator and 

the audience. 
● When not being shown, the operator assumes responsibility as laid out by 

the provided safety standards for a safe startup and/or shutdown. 

On Reliability 
● The system can be safely stored in any room safe enough to store high 

voltage circuits. 
● The full project will be able to be reliably moved to and from storage with 

minimal assembly and disassembly. 
● A combination of input will not result in a dangerous situation. 
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● The system can be safely shut down and de-energized immediately at any 
time. 

Limitations: 
● The end product is no larger than 2 ft tall with a 1 x 1 square foot area 
● It must be able to be run off of a wall outlet. (120V 60Hz) 
● Can only play two different tones at once 
● Operators must be associated with the EcpE Department. 
● The Tesla coil will only be able to be activated using the project interfaces. 

1.6 EXPECTED END PRODUCT AND OTHER DELIVERABLES 

● MIDI Zeusaphone (May 2019)+ 
○ This will be the final product of our project. This will include a Tesla coil or 

coils that will play frequencies to make music while electricity arcs out of 
them. This will all be made by us and programmed by us. This device will 
be portable and easy to work so it can be used by a large number of people. 

● User and Safety Manuals (May 2019) 
○ The user manual, or operating manual, provides general information for an 

operator of the Zeusaphone. It is created to be thorough but brief enough 
so an operator will not need extensive training. The safety manual is 
written with the same philosophy, but provides thorough safety 
information while the user manual provides thorough operating 
information. 

● Keyboard (May 2019) 
○ Along with the Zeusaphone, a MIDI keyboard is provided. There are 

instructions inside the user manual on how to connect the keyboard to the 
Zeusaphone. This keyboard provides an alternative live input into the 
Zeusaphone, as opposed to playing loaded songs. 
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2. Specifications and Analysis 

2.1 PROPOSED DESIGN 

We propose a zeusaphone that is controlled by a microcontroller. The microcontroller 
processes MIDI events from a variety of inputs and controls the tesla coil accordingly. A 
very general overview of the layout can be seen below in figure (Fig.1). 

We chose to use a Raspberry Pi for the microcontroller. The Raspberry Pi is a small, credit 
card sized computer that is capable of running a full Linux operating system. We chose to 
use the Raspberry Pi for a number of reasons: 

● The Raspberry Pi has a number of general purpose I/O pins, including two with 
hardware-timed pulse-width modulation, which we use for outputting the audio 
waveforms. 

● The Raspberry Pi is capable of acting as a wireless access point, and it can host its 
own web server. We use this to host an interface for controlling the tesla coil 
system. 

● We had several Raspberry Pi’s immediately available for testing, and several of our 
team members have experience setting them up and using them. 

Music can be played on the tesla coil from two different sources. First, MIDI files can be 
stored on the Raspberry Pi and played back. These MIDI files are loaded, managed, and 
played using the web interface. Second, a MIDI keyboard can be plugged into the 
Raspberry Pi and used to create live input. The web interface is used to select between 
keyboard mode or just playing a loaded song. When in keyboard mode, the pitch bending 
knob will (by intentional design) affect the frequency. This ranges from plus or minus two 
semitones from the original notes. It is essentially an added feature that a normal 
keyboard would have. 

The Raspberry Pi is connected to the tesla coil with a fiber optic cable, to avoid 
interference from the operation of the tesla coil. The output from this fiber line is used to 
modulate the tesla coil itself. When the line is active, the tesla coil is enabled and sparks 
are created. When the line is not active, the tesla coil is off. By modulating this output, 
music can be played through the sparks on the tesla coil. 

In order for a user to control the Raspberry Pi itself, the Pi hosts a simple web interface 
accessible through http using any web browser. This web interface will have the following 
features: 

● Upload a new MIDI file to the Raspberry Pi, to enable it to be played on the tesla 
coil 

● Play a MIDI file currently stored on the Raspberry Pi 
● Enable/Disable the MIDI keyboard input functionality 

To keep this control limited to the correct people, the Pi will transmit its own WiFi Access 
Point (WAP) protected by WPA2. The web page will only be available on this WAP, which 
will not be connected to the internet itself, thus providing a layer of security. 
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Figure 1: Overview of the Project Layout 

The tesla coil itself is classified as a solid state tesla coil (SSTC), which means it uses 
semiconductors (not a spark-gap) to drive the primary coil. Our tesla coil uses power 
MOSFETs to switch the voltage across the primary coil, which then causes the secondary 
coil to resonate. This resonation steps the voltage up drastically in the secondary coil, and 
that causes the air to breakdown around the top of the coil, releases sparks and sound. For 
the high frequency switching to occur, the MOSFET’s are driven by the control logic 
circuit. This circuit takes in the output from the transmitter circuit and syncs it with the 
output of the coil with an antenna. The synced signal is then used to drive the MOSFETs. 
The secondary coil is wound with 30 gauge magnet wire, and attaches to a conductive, 
toroidal topload. This topload adds capacitance to the secondary, allowing the coil to 
build up more energy before it releases it as sparks. The coil and its associated electronics 
has a base of 8 inches by 8 inches, and is shy of 2 feet tall. 

2.2 DESIGN ANALYSIS 

The entire design can be broken down into two main components: the user interaction 
side, which contains the Raspberry Pi, the MIDI keyboard, and the interrupter circuit; and 
the tesla coil, which actually produces the output. 

2.2.1 The Application Software 

The app layer is where music is input into the system. There are two different applications, 
one for reading MIDI files from storage and one for reading live input from a MIDI 
keyboard. Both applications write the notes in the same way to a Unix socket. The apps 
are responsible for reading and parsing the input data, converting it into a two-channel 
stream of notes, and sending it to the driver layer through the socket where notes will be 
read and generated. 

2.2.1.1 MIDI File App 

The MIDI file reader opens and reads MIDI files from the filesystem using the midifile C++ 
library written by Craig Sapp. This library reads the MIDI file and parses it into a C++ 

SDMAY19-11     9 



 

object. All of the events in the MIDI file are stored in an array, in order. The MIDI file app 
reconstructs the timing of events using a wait loop, and reads the notes specified in the 
file. If more than two notes are played at once, some of the notes may be discarded; the 
MIDI file app will only play two channels at a time. 

2.2.1.2 MIDI Keyboard App 

The MIDI keyboard receiver program listens for MIDI messages from devices attached to 
the Raspberry Pi. These messages are initially processed by the Advanced Linux Sound 
Architecture library (ALSA) in the kernel. The program then makes use of the RtMidi 
library by Gary Scavone to parse these messages and setup a callback function to handle 
them. The MIDI keyboard app ignores all MIDI events except note on, note off, and pitch 
bend. It only outputs two channels at a time, but it overwrites the oldest note that is still 
being held if a third note is played. 

2.2.2 The Driver Software 

The driver is the program on the Raspberry Pi responsible for interfacing with the tesla 
coil. It runs in the background, and acts as a server for the MIDI file app and MIDI 
keyboard app to connect to. It listens to the note messages input to a socket, and it 
generates output waveforms on the Raspberry Pi GPIO pins accordingly. Frequency is 
varied based on the notes being played, which is what determines the pitch of the note. 

After experimenting with timing loops, threading, and interrupts, we finally decided to 
use the Raspberry Pi’s hardware pulse width modulation pins to output the waveform. 
None of the other options provided the stability and timing accuracy that we needed. The 
hardware PWM pins have their own timing chip and counter that are seperate from the 
system clock of the Raspberry Pi. These counters will continue to output a series of pulses 
at exactly the frequency set no matter what the workload of the processor is, and no 
kernel process can preempt or delay them. Issues came from using other pins because 
other tasks on the Pi can stall the output wave, leading to notes being played incorrectly 
with lots of static sound. The final waveform on the PWM pin will not be affected by these 
problems. Each channel is then sent as two outputs into the transmitter circuit, so two 
channels of music can be played. The transmitter circuit smooths the waveform before it is 
finally sent to the coil. 

2.2.3 The Transmitter Circuit 

The purpose of the transmitter circuit is to convert the signals output from the Raspberry 
Pi to a waveform over a fiber optic transmitter. The circuit also contains some logic to add 
a minimum time before another wave can start, so two notes played directly on top of 
each other will not create an extended pulse. This extended pulse causes an unclean note 
that has the potential to damage the coil. This logic is done in hardware rather than 
software because of the time sensitivity; even small delays in this logic will drastically 
affect the output of the coil. 

The three LEDs output from the Pi (LEDR, LEDY, and LEDG) are signal LEDs that show 
the state of the transmitter circuit. The red LED shows that the Pi is powered on. The 
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green LED signals that the Tesla Coil driver software is running. The yellow LED signals 
that a program (either a keyboard or a Midi file) is connected to the driver software and 
running on the Tesla Coil. 

The data sheets for the LEDs state that 30 mA is the maximum forward DC current they 
can handle. We did not want to push this, so we decided to select resistor values that 
placed the current about 20 mA. The LEDs are powered by 3.3V rails. The green and 
yellow LEDs draw 2.4 V, while the red LED draws 2 V. The remaining voltage needs to go 
across the resistor. The following equations show the how the resistor values were 
selected:  

(green and yellow LED)5Ω20mA
3.3 − 2.4V = 4  

(red LED)5Ω20mA
3.3−2V = 6  

Since we already had 47 and 68 Ohm resistors, we just used those. This makes the LEDs 
produce the maximum brightness we are willing to let them create. Combined they draw 
about 60 mA, which is acceptable for the Raspberry Pi power supply. 

The Raspberry Pi’s two PWM pins each carry info for a note channel. These two signals are 
combined with an OR gate in IC1. Since these output pins function at 3.3V, but the 555 
timers require a 5V signal, a pull-up transistor (IC5) is used to bring up the voltage to 5V. 
This also inverts the signal which is then fed into a second OR gate (IC4), which operates 
with the 555 timers. Both 555 timers operate in monostable mode. The first 555 timer (IC6) 
acts as a timer - when it receives a pulse (active-low) it goes high for 110 μs. This output is 
fed back into the OR gate. When the 2nd 555 timer (IC7), which is also active-low, receives 
a pulse, it goes active for 90 ​μs​. This signal is finally fed into the fiber optic transmitter. 

The amount of time a 555 timer operating in monostable mode stays active after being 
enabled is given by the following equation [7]: 

.1t = 1 * R * C  

Rearranging to solve for R gives 

R = t
1.1 C*

 

With a capacitance of 0.01 μF, and times of 110 μs and 90 μs, the resistor values are 
calculated to be 10 kΩ and 8182 Ω, respectively. Thus, 10 kΩ and 8.2 kΩ resistor values 
were used as the closest standard resistance values available to what we calculated. 
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Figure 2: Graph of Transmitter Waveforms 

The transmitter was also designed to operate within the power limits of the Raspberry Pi 
power supply, which supplies 2.5A max. The Raspberry Pi will use at most 1A. The LEDs 
require 60mA. The MIDI keyboard uses at most 500mA since it operates within USB 2.0 
limitations. The fiber optic transmitter uses 30mA. This totals up to about 1.6A, which is 
well within the 2.5A limit. 

The final output of the transmitter circuit is a single waveform being sent into a fiber optic 
transmitter into the fiber optic cable. All of the transmitter circuitry is assembled onto a 
single printed circuit board. The Tesla coil receives the waveform from the transmitter 
through the fiber optic receiver. This waveform is then used to trigger the coil on and off. 
A fiber optic connection is used as it is not affected by the magnetic field generated by the 
tesla coil. 
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Figure 3: Transmitter Schematic 

 

Schematic Reference Description Digi-Key Part Number 

R1 150 Ω Resistor - 

R2, R6, R10, R11 10 kΩ Resistor - 

R3, R4 47 Ω Resistor - 

R5 68 Ω Resistor - 

R7 1 kΩ Resistor - 

R8 8.2 kΩ Resistor - 

R9 22 kΩ Resistor - 

C1, C2 0.1 μF Capacitor 478-7337-1-ND 

C3, C4, C5, C6 0.01 μF Capacitor C322C103K3G5TA7301-ND 
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S1 Side-Mount Button 450-1662-ND 

S2 Side-Mount Switch CKN9559-ND 

LEDR Red LED 751-1130-ND 

LEDY Yellow LED 751-1147-ND 

LEDG Green LED TLHG4600-ND 

IC1, IC4 OR Gate 296-1589-5-ND 

IC2, IC5 PN2222 Transistor PN2222TACT-ND 

IC3 Fiber Optic Transmitter FB162-ND 

IC6, IC7 555 Timer - 

J1 2x20 Header S6104-ND 

IC1, IC4 Mount DIP-14 Mount AE9989-ND 

IC6, IC7 Mount DIP-8 Mount AE9986-ND 

Table 1: Transmitter Parts 
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Figure 4: Transmitter Printed Circuit Board Layout 
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2.2.4 Power Provider and Input Logic 

 

Figure 5: Tesla Coil Power Provider Schematic 

The power provider circuit is simply a circuit that provides 12V and 5V rails for the rest of 
the tesla coil. It uses a transformer to convert 120V from the wall power to a lower voltage. 
We initially designed it to go from 120V to 20V. However, we discovered that transformers 
don’t output a constant voltage - it depends on the current draw. Since the circuit does 
not draw much current, the output voltage of the transformer was actually closer to 40V, 
which is way too high for the 12V regulator. The transformer could be re-wired to output 
10V instead, which when used with the circuit actually output around 16.2V, which works 
well with the 12V regulator. 

After stepping down the voltage, the power is rectified with a full bridge rectifier before 
being powering the 12V regulator, which in turn powers the 5V regulator. A red LED was 
attached to the 5V rail as well to indicate if the power provider circuit is running. Note 
that it does take several seconds for resistor attached to the LED to bleed off remaining 
energy after the circuit is unplugged. 
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Figure 6: Tesla Coil Input Logic Schematic 

The input logic circuit receives the signals generated by the transmitter via a fiber optic 
cable and synchronizes them with the resonance of the coil. The fiber optic receiver’s 
signal is used to drive two MOSFET drivers (INV_DR and NON_INV_DR), which are 
designed to connect to MOSFETS and switch them on and off according to the signals 
they receive. One driver is an inverting driver, while the other is a non-inverting driver - 
this allows one driver to switch off while the other switches on. The output of these 
drivers are then fed to the bridge PCB. 

The drivers are synchronized with the coil itself by attaching the enable pins of the drivers 
to the output of an antenna, which picks up the electric field generated by the coil. To 
convert the antenna’s output to a digital signal, it is run through a Not Gate (the 
HEX_INV) twice. To prevent the gate from getting fried by large signals from the antenna, 
the antenna’s output is clamped between 0V and 5V by two diodes, one tied to ground, 
one tied to 5V. 

 

Schematic Reference Description Digi-Key Part Number 

R1 470 Ω Resistor - 

R2 22 kΩ Resistor - 

C1 2200 μF Capacitor 493-1086-ND 

C2, C3 1000 μF Capacitor 1189-1583-1-ND 
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C4, C7, C_FO 0.1 μF Capacitor 478-7337-1-ND 

C5, C6 1 μF Capacitor 445-173436-1-ND 

C_ANT 0.1 μF Capacitor (high 
voltage rating) 

445-173324-1-ND 

POW_LED Red LED 751-1130-ND 

D1, D2, D3, D4 1N4007 Diode 1N4007FSCT-ND 

D5, D6 1N4148 Signal Diode  1N4148FSCT-ND 

TRANSFORMER 115VAC:10VAC Transformer VPP20-1000-B-ND 

12V_REGULATOR 12 V Regulator  MC7812CTGOS-ND 

5V_REGULATOR 5 V Regulator MC7805CTGOS-ND 

HEX_INV Hex Inverter w/ Schmitt 
Trigger 

296-1577-5-ND 

INV_DR Inverting Gate Driver 296-13686-5-ND 

NON_INV_DR Non-Inverting Gate Driver 296-13689-5-ND 

FO_RECEIVER Fiber Optic Receiver FB123-ND 

WALL_POWER, 
GATE_DRIVE 

Screw Terminal 277-1667-ND 

Table 2: Power Provider and Input Logic Circuit Parts 
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Figure 7: PP/IL Printed Circuit Board Layout 

2.2.5 Bridge Circuit 

The bridge circuit uses the output from the input logic circuit and a 120VAC source to 
create an alternating voltage across a load consisting of the primary coil (PRIMARY) and 
two capacitors (C2 & C3). This is achieved by first using a full bridge rectifier to rectify the 
AC voltage. C4, R5, and R6 are added to smoothen out the voltage ripple to create a more 
uniform DC voltage. Then the rectified voltage is used as the source on a full bridge 
single-phase inverter.  

The four power MOSFETs (PWR_MOS_1-4) on the inverter are driven by the gate drive 
transformer (GDT) which is a one to one transformer that allows for the signal from the 
input logic circuit to be used while also isolating one circuit from the other. To achieve the 
functionality of the inverter from one signal, MOSFETs 3 and 2 are connected to the GDT 
in reverse of MOSFETs 1 and 4. Therefore, when a HIGH signal is coming from 
GATE_DRIVE_IN, MOSFETs 1 and 4 will conduct, while 3 and 2 will be open and vice 
versa for when a LOW signal is sent. This ultimately creates the desired square wave of 
+108V to -108V across the primary coil and parallel capacitors. 
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Figure 8: Tesla Coil Bridge Schematic 

Schematic Reference Description Digi-Key Part Number 

R1, R2, R3, R4, R7, R8, R9, 
R10 

10 kΩ Resistor - 

R5, R6 200 kΩ Resistor - 

C2, C3 680 nF Capacitor 495-1299-ND 

C4 470 uF Capacitor 493-7069-ND 

D1, D2, D3, D4 Flyback Diode MUR860GOS-ND 

FUSE (brackets) Brackets to hold fuse F4189-ND 

FUSE 5A Fuse 507-1232-ND 

BRIDGE_RECT Full-Bridge Rectifier 641-1374-5-ND 

GD1, GD2 Gate Drive Pulse 
Transformer 

553-1646-5-ND 

PWR_MOS1, PWR_MOS_2, 
PWR_MOS_3, 
PWR_MOS_4 

IRFP260NPBF Power 
MOSFET 

IRFP260NPBF-ND 

120V_AC, 
GATE_DRIVE_IN, 

PRIMARY 

Screw Terminal 277-1667-ND 
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Table 3: Bridge Circuit Parts 

Figure 9: Bridge Printed Circuit Board Layout 

 

2.2.6 Physical Construction 

A case was made for both the transmitter component and the coil component of the project. The 
cases were made with acrylic, since the material is relatively cheap and durable. It is made with 
clear acrylic specifically to allow people to see the interiors of the components. The case designs 
were modeled in the SolidWorks CAD software and then cut with a laser cutter. 

2.2.6.1 Transmitter Case 

The transmitter case contains both the Raspberry Pi and the transmitter PCB. The transmitter PCB 
was created to fit on top of the Raspberry Pi and align with the Pi’s screw holes. The case was made 
with ⅛ inch clear acrylic and cut with a laser cutter. The pieces are held together with screws and 
standoffs that fit through the screw holes of both the transmitter PCB and the Pi PCB. Care was 
taken to align holes in the case to access the buttons, switches, and ports on the PCBs. 

The following figure shows the amount of the case that was designed within SolidWorks. The 
Raspberry Pi 3D model compliments of [2]. 
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Figure 10: Transmitter Case 

The following table shows which screws and standoffs are used in the transmitter case: 

Purpose Material Screw Length Thread Size 

Bottom Case to Pi 
Standoff (M-F) 

Metal 7mm M2.5 

Pi to Transmitter 
Standoff (M-F) 

Metal 12mm M2.5 

Transmitter to Top 
Case Standoff (F-F) 

Metal 15mm M2.5 

Top and Bottom 
Screws 

Metal 6mm M2.5 

Table 4: Transmitter Screws and Standoffs 

2.2.6.2 Tesla Coil Case 

The case for the Tesla Coil contains the Input Logic/Power Provider PCB and the Coil Bridge PCB. 
The two PCBS are placed next to each other in the case, again held in place with standoffs and 
screws. The two PCBs are connected with wire that attaches to screw mounts on each PCB. Since 
the case has the secondary coil and topload attached to it as well, it was made with ¼ inch clear 
acrylic. The case itself was designed with an open side to allow an easy view of the eternal 
electronics. Two sides are made from acrylic, while the last side consists of the aluminum heat sink 
for the power MOSFETs in the bridge circuit. Screw holes were bored and tapped into the 
aluminum heat sink to allow the acrylic top and bottom to screw into the heat sink. The heat sink 
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also had holes that were bored and tapped to allow the MOSFETs to be screwed into the heat sink. 
The MOSFETs each had sil pad separating them from the heat sink, allowing thermal contact while 
preventing electrical contact. 

The secondary coil is attached with a PVC flange. The flange is attached to the case with screws and 
bolts. The PVC pipe rests inside the flange - it is a snug fit. There are holes in the top of the case for 
the antenna and the primary coil wire. 

The following figure shows the amount of the tesla coil case that was designed within SolidWorks. 
The 3D models of the AC Power Receptacle and the PVC flange compliments of [4] and [9], 
respectively. Note the PVC flange model is slightly different than the actual flange used - the 
footprint of the holes on the flat side is different. 

 

Figure 11: The Coil Case with Secondary PVC 
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The following table shows which screws and standoffs are used in the coil case: 

Purpose Material Screw Length Thread Size 

MOSFET Heatsink Metal 10mm M3 

GND Heatsink Metal 8mm M3 

Case to Heatsink Metal 12mm (except the 
one on the top close 
to the 470nF 
capacitor, which is 
10mm) 

M3 

Case Top to Case 
Sides 

Nylon 14mm 4-40 

120V Wall Adapter Metal 0.5inch M3 or smaller 

PCB to Standoff and 
Standoff to Case 

Metal 9mm 4-40 

PCB Standoff Metal 7mm 4-40 

Table 5: Tesla Coil Case Screws and Standoffs 

2.2.6.3 Secondary Coil Winding 

The secondary coil consists of 3” PVC pipe cut to 14” in length, with 30 gauge wire wound 
around the outside. 

In order to wind and varnish the [number of turns here] turns on the secondary coil, a 
small rig was constructed out of 80/20 aluminum extrusion. The rig consists of frame 
slightly longer than the coil itself with arms on either end that stick up about 5 inches. ¼ 
inch screw holes were drilled into these arms. The coil could then be placed into the rig 
and spun about the center of its cylinder. In order to connect the framework to the coil, 
acrylic end caps were made for each end. Each end cap had two layers - one that fits just 
inside the cylinder, and one that fits right on top of the cylinder. The end caps had square 
holes cut in their center to allow a carriage bolt to fit into them. After gluing the two parts 
of an end cap together, a carriage bolt was secured in the hole with a washer and a nut, 
with the carriage bolt sticking out away from the cylinder. Special care was taken to 
ensure that the bolts were completely perpendicular to the end caps. These end caps were 
then glued onto the PVC cylinder. The bolts sticking out of the end caps can then be 
placed into the holes in the rig, allowing the whole coil to spin freely. A drill was attached 
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to on of the bolts, and used to spin the coil both for winding the wire and spraying/drying 
the varnish. 

One end cap was made with spokes instead of being solid. This allowed the bolts to be 
unscrewed and then slipped out of the cylinder through the holes. The other end cap was 
left solid to allow the topload to be screwed onto it. Both end caps were left on the 
cylinder in the final coil. 

 

Figure 12: Winding Rig After Completion 

 

The secondary coil has a measured resistance of 94 Ohms. With the topload, it resonates 
at around 290 kHz. 

2.2.6.4 Topload 

The toroidal shape of the topload was made with standard 3” heating duct, wrapped 
around to make a loop. The two ends are held together with aluminum tape. To attach the 
topload, two small disks that fit inside the heating duct loop were cut from cardboard and 
wrapped in aluminum foil. These were then taped to the heating duct loop. Holes were cut 
in the middle of the disks that are big enough to allow the bolt sticking from the top of the 
secondary pipe to fit through. The topload was then connected with washers and nuts to 
the bolt. The top of the secondary coil was soldered and taped to the topload, allowing 
electrical connection. Some copper wire was added on the top to serve as a breakout 
point. 
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Figure 13: Tesla Coil Topload and Breakout Point 

3 Testing and Implementation 

3.1 INTERFACE SPECIFICATIONS 

3.1.1 Interface between MIDI Keyboard and MIDI Keyboard App 

The keyboard is interfaced with the Raspberry Pi and the MIDI Keyboard application 
running on the Raspberry Pi via a USB cable. They communicate using the USB MIDI 
protocol. However, we did not need to implement anything with regard to this protocol 
because it is all handled automatically in the Linux kernel ALSA libraries. The RtMidi 
library performs the system interactions to read the MIDI messages, and we can access 
them in turn using the RtMidi library API. 

3.1.2 Interface between Software Application Layer and Driver Layer 

The following protocol is used to interface between the App software and the Driver 
software. Messages are sent via a local UNIX TCP socket with the following format: 

C<channel number>F<frequency>; 

Each message must have a channel number and the frequency. The channel number is 
used to keep track of which notes are playing; only two notes can play at a time, so if a 
new frequency is sent on the same channel the old frequency will be overwritten. The 
frequency is a floating point value, specifying the sound frequency to be played on that 
channel. To turn a channel off, a frequency of “0” is sent. Each message must end with a 
semicolon. 
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3.1.3 Interface between Transmitter Circuit and Tesla Coil 

The transmitter circuit interfaces with the input logic circuit over a fiber optic 
communication link. This will allow us to keep the keyboard and Raspberry Pi 
microcontroller a safe distance away from the tesla coil while also preventing 
electromagnetic interference from the tesla coil from distorting the control signals. 

The communication sent over the fiber optic channel is a simple on/off state. When the 
channel is active, the tesla coil will be on, producing sparks. When the channel is inactive, 
the tesla coil will be off. Turning the tesla coil on and off at a certain frequency produces 
sound of that frequency. The transmitter sends a (90us) pulse at various frequencies. A 
standard pulse width is due to the design of the transmitter, even though duty cycle would 
be a much better solution. 

3.1.4 Web Interface for User Interaction 

The web interface used to remotely control the tesla coil will be hosted on a web server on 
the Raspberry Pi. This web server will only be accessible from a WiFi network also hosted 
on the Raspberry Pi. The network to access the web interface will be secured with WPA2, 
preventing unauthorized users from connecting to the interface and controlling the tesla 
coil. 

The web interface would have only a few simple functions. First, it would allow the user to 
select between live keyboard input and MIDI file input. If MIDI file input is selected, the 
user will have three options: upload new MIDI files, play a saved MIDI file, or delete a 
MIDI file. The web interface will be designed to work with all modern browsers (Safari, 
Chrome, Firefox, and Edge), and it will also be compatible with both mobile and desktop 
browsers. 

3.2 HARDWARE AND SOFTWARE 

To test if the App Layer works correctly and accurately records and transmit the MIDI 
data, a Driver Emulator software was written. This software has the same interface as the 
actual driver, receiving data on turning notes on/off for specific channels via a socket 
connection. However, instead of interfacing with a GPIO pin and outputting voltage, the 
emulator creates a wav sound file from the data. This file can then be listened to in order 
to determine if the information was processed correctly. This software has been used to 
test both the keyboard input and MIDI file input programs (in the App Layer). 

The output of the driver was tested by viewing the wave on an oscilloscope. It was 
compared to the OneTesla waveform before using it as the input into the OneTesla’s coil. 
Once confirmed that the waveforms were similar in pulse width and frequency, it was sent 
to the coil with suboptimal results. The sound output contained lots of noise, and the coil 
would intermittently output a large spark accompanied by a larger noise. At this point, we 
developed the transmitter circuit to clean up the waveform. Then, we got the OneTesla 
running with the Raspberry Pi’s wave generation through the breadboard transmitter. Our 
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whole transmitter was then confirmed to work similar to the OneTesla’s interrupter, and 
produce slightly better arcs and louder sound. 

A waveform generator and a power supply was used to provide controlled inputs into the 
circuits. This enabled testing of ideal and extreme cases of voltages and waveforms so that 
we could test the limits of the circuit without creating an uncontrolled and unsafe testing 
environment that could potentially damage test equipment, the Zeusaphone, or others 
nearby. This method of testing was used extensively when debugging the entire hardware 
system with the OneTesla coil. 

3.3 FUNCTIONAL TESTING 
Both forms of input (keyboard and MIDI files) needed to be verified. This was tested in 
stages, since the layers have been modularized. As components were completed, they were 
tested in combination with the OneTesla system to confirm functionality. 

3.3.1 Application Layer Testing 

The reception of the input can be tested with the driver emulator, as mentioned earlier. 
This ensures that the input is interpreted correctly by the application. If the resulting 
audio file matches the song that was inputted into the system, then it is working correctly. 

3.3.2 Driver Layer Testing 

The output voltages from the driver and interrupter can then be tested with an 
oscilloscope. A single output frequency can be sent through the driver layer, and the 
frequency of the output can be compared to the intended frequency. This was mainly 
tested by plugging the output into a speaker and listening to the song that was supposed 
to play. This helped us fix an issue that was solved by moving the output to the PWM pins 
on the Raspberry Pi and switching libraries for GPIO interfacing. The final level of driver 
testing was done by sending the output to the OneTesla’s full coil setup, which was 
described in section 3.2. 

3.3.3 Tesla Coil Testing 

All circuits were tested in breadboard form with low voltages to make sure the overall 
design would work. We constructed a ‘mini’ coil to test our circuit designs at low voltages 
where a mistake would not lead to the destruction of the circuit or the coil. The ‘mini’ coil 
proved to be extremely useful as it added a layer of preliminary testing to debug some 
problems and finally confirm our designs. A major milestone was when we could play 
music on the mini coil using hardware entirely designed ourselves with no components 
from the OneTesla kit. This setup involved the Raspberry Pi running our software, the 
breadboard version of the transmitter, the breadboard low-voltage bridge circuit, and the 
mini coil. We used the oscilloscope to verify the waveforms on several pins throughout the 
circuit, and we were also able to view the induced voltage from the coil in the air to verify 
that the coil was oscillating properly and generating the correct frequencies. 
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Figure 14: The Mini Coil 

After confirming functionality on the breadboard, high voltage versions of the circuits 
were prototyped on perfboard, which was connected to the primary coil from the 
OneTesla kit. We did not use a perfboard iteration for the transmitter circuit, since it did 
not use high power components. Before designing and ordering PCBs, we made sure the 
circuits displayed the same behaviour when running on high voltage. The major issue we 
discovered at this stage was that the higher voltage coil suffered from noise induced by 
itself back in its control circuits. We traced the noise using the oscilloscope to the antenna 
input, and when we touched the oscilloscope to this pin the noise disappeared. We 
deduced that the pin was floating, and we solved the issue by adding a pull-down resistor. 

Finally, we tested the driver circuits with our own coil. The main thing we needed to test 
was the control signal pulse-width needed to make the coil to output a good volume with 
visible sparks. This was done by sending pulses across a fiber optic transmitter using a 
function generator. With this setup, we could easily change the frequency and pulse 
widths of the signals sent. During this testing, we pushed the coil up to 100 μs pulse width, 
which was impressive but a little too loud. To be on the safe side, we used a resistor in our 
transmitter that gave about an 90 μs pulse width. 

During this testing, we also discovered some glowing about the primary coil, as seen in the 
picture below. We reasoned that the issue was due to the primary coil being about an inch 
up the secondary coil, where the voltage had already been stepped up high enough that it 
was trying to arc back to the primary coil. Moving the primary coil windings down below 
the secondary coil solved this issue. 

SDMAY19-11     29 



 

 

Figure 15: Glowing around the primary coil 

3.4 NON-FUNCTIONAL TESTING 

3.4.1 Ease of Use 

To facilitate the ease of use, we are providing a user manual to explain how to use the 
Zeusaphone. Hopefully this should make it easy to set up and use for someone with no 
knowledge of the system. Of course, the system is still designed to be easy to use, but is 
too complex for someone to reasonably use without instruction. The web interface is also 
a solution to ease of use problems. It is designed to be straightforward with only necessary 
UI elements. Connecting to WiFi is familiar to people, so the Raspberry Pi’s access point is 
something that users should already understand. Since the end goal of the project relies 
on it being shown as a live demo, the parts that users interact with should be easy to use 
for them. The user manual is a comprehensive resource, but remains brief with the main 
points of operation. 

3.4.2 Reliability Testing 

Testing was done as components were developed. We tested the functionality of those 
components along with whatever previous components were completed at the time. There 
were dozens of configurations that we tested with combinations of breadboard, perfboard, 
and OneTesla components. When debugging a circuit, it would normally double as stress 
testing since we spent a good amount of time making sure everything worked as expected. 
Unexpected results from the coil or oscilloscope were our indicators of problems in the 
system. We tested the full tesla coil circuit with much more pulse width than what the 
Zeusaphone will use when being played. This was from normal debugging of the circuit, 
but also testing to see how large we could make the arcs since the full circuit was 
completed on perfboard during these tests. 
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3.5 MODELING AND SIMULATION 

The project was made with a modular design, allowing for different layers to be tested by 
simulators. The software and microcontroller output was tested with an oscilloscope, to 
ensure that the waveform was smooth and at the intended frequency. By plugging in an 
audio jack and a pair of headphones into the circuit, the output could also be listened to. 
The sound should resemble the MIDI messages that were entered, playing back the song. 

The physical designs of the cases were modeled in SolidWorks, while the PCBs were 
modeled in Multisim. The modeling, along with modular design, allowed different aspects 
to be easily tweaked without requiring the whole system to be rebuilt. 

JavaTC [3] is an online tool used by tesla coil creators to get estimates of different 
properties of a coil. By inputting characteristics such as the coil radius and number of 
turns in the secondary, it will calculate estimates like the resonating frequency of the 
secondary coil. This tool allowed us to model different coil designs without having to 
actually build them. 

3.6 PROCESS 

The general design of the project (especially in regards to the software) was planned with 
testing in mind - each layer is modular and can be tested without the other layers being 
present. Each program running on the raspberry pi will be tested on their own. When they 
are functioning as expected, we will connect them to ensure that they communicate 
correctly with each other. Before connecting the output of the GPIO pins on the 
microcontroller to any circuits, we will check it with an oscilloscope.  

Along with the software, the hardware of the zeusaphone is designed to be modular in 
nature. Before each portion is wired to another, the outputs of each module were 
monitored with a controlled input created by a waveform function generator. 

Several iterations of the circuits were made. The first (and simplest) coil was built by hand 
wrapping some wire around a cardboard tube. This secondary was initially tested with a 
very simple circuit, consisting of a diode, resistor, and a BJT (called a slayer exciter). This 
circuit was not capable of being controlled beyond being turned on and off, and had a 
nasty tendency to burn out the transistor used. However, it showed that a tesla coil could 
be made and operated. 

The next iteration used the same mini secondary coil, but used much more advanced 
circuitry. The circuits were split into four main sections - the transmitter, the power 
provider, the input logic, and the bridge sections. The transmitter was assembled in a 
breadboard, and then attached to a raspberry pi. The input logic and bridge circuits were 
assembled on another breadboard, which was then attached to the mini secondary coil. 
The power provider circuit was replaced in early testing with a voltage source plugged into 
the breadboards. The voltage across the primary coil was created with its own voltage 
source, allowing us to easily control the power output by the coil. This setup allowed us to 
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test the output of our software on a low powered coil, which allowed us to troubleshoot 
problems without a high voltage factor being present. 

The next iteration kept the transmitter breadboard but replaced the input logic/bridge 
breadboard with a perfboard. The power provider circuit was also added to this perfboard. 
This iteration was first tested with the mini secondary coil, to ensure that both the power 
provider worked, and that the circuits were placed into the perfboard properly. The mini 
secondary coil was then replaced with the primary and secondary coil from the OneTesla 
and ran at a much higher voltage (from the wall as opposed to a voltage source). 

These circuits were then fabricated into three PCBs - the transmitter PCB, the input 
logic/power provider PCB, and the bridge PCB. The transmitter PCB was attached directly 
to a raspberry pi. This combined circuit was then placed into the transmitter case, which is 
the final transmitter of the project. The other two PCBs were placed into the coil case, and 
the OneTesla coil was replaced with the coil created by us. This is the final coil of the 
project. 

3.7 RESULTS 

By the end of the project, we had tested every component thoroughly by itself, and 
modularly with the rest of the components. We verified that the tesla coil could play songs 
and live keyboard input, and we confirmed that the note frequencies that the tesla coil 
played were exactly the pitches we expected. 

3.8 IMPLEMENTATION ISSUES AND CHALLENGES 

It took some time and experimentation to iron out which software libraries would be used 
throughout the project. On the MIDI receiving end of the microcontroller, several libraries 
were tried before RtMidi was chosen. The other libraries proved to be overly complex and 
difficult to work with. More notably, on the other side of the microcontroller, it took a lot 
of testing to find a library that would enable outputting a reliable, steady waveform from 
the Pi. Since this output directly affects the power state of the Tesla Coil, it was imperative 
to find a way to create this output without jitter or other anomalies. Most libraries use the 
microcontroller’s system clock and a process with a sleep command. These processes can 
be interrupted by the Pi’s kernel, thus disturbing the output. The solution was to use the 
Raspberry Pi’s PWM pins, since they use their own clock and continue to operate 
regardless of the processes being run by the Pi’s kernel. 

When we stepped our perboard version of the circuit up from half-bridge circuit to a 
full-bridge circuit, we began to have issues with noise feedback disrupting the input logic 
circuit. We traced the noise back through the circuit to the antenna pin. When we 
touched the input of the antenna to the hex inverter with the oscilloscope, the noise went 
away. We determined that the pin was floating, and we added a pull-down resistor which 
eliminated the noise. 
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A major issue for the hardware was the team makeup - two electrical engineers and four 
computers engineers. With the project being so hardware intensive, most of the computer 
engineers had to switch to working only on the hardware in order for the project to be 
finished on time. 

4 Closing Material 

4.1 CONCLUSION 

As our society grows more embedded with technology, we will need more engineers with 
an electrical and computer background. To attract more students to the ECpE department 
at ISU, a musical Tesla coil (Zeusaphone) was created. This Zeusaphone is playable both 
by a MIDI keyboard and by MIDI files stored on a microcontroller. The microcontroller 
emits its own WAP, allowing the presenter of the coil to easily connect to it and control it. 
The microcontroller controls the Zeusaphone. The dazzling displays from the Zeusaphone 
will inspire prospective students and encourage them to join the ECpE department. 
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